Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi, supatta.viri@kmutt.ac.th
|
Parametric Regularization Loss in Super Resolution Reconstruction S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, Minh Le Nguyen, C.Haruechaiyasak. [paper] |
|
|
Parametric Loss based Super-Resolution for Scene Text Recognition S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, T. Racharak, Minh Le Nguyen, C.Haruechaiyasak , and T. Yamasaki. [paper] / [code] |
|
|
A Web Demo Interface for Explainable Image Aesthetic Evaluation Using Vision-Language Models</a> S. Viriyavisuthisakul, S. Yoshida, P. Sanguansat and T. Yamasaki MIPR, 2025 (Accepted) [VDO] / [code] |
|
|
Interpretable Aesthetic Assessment and Prompt-Guided Image Retouching</a> S. Viriyavisuthisakul, P. Sanguansat and T. Yamasaki AI-SIPM at MIPR, 2025 (Accepted) |
|
|
Undertrained Image Reconstruction for Realistic Degradation in Blind
Image Super-Resolution S. Viriyavisuthisakul, P. Sanguansat and T. Yamasaki arXiv, 2025 [paper] |
|
|
A Web Demo Interface for Super-Resolution Reconstruction with Parametric Regularization Loss S. Viriyavisuthisakul, P. Sanguansat and T. Yamasaki ICMR, 2024 [paper] / [code]/ [VDO] |
|
|
Optimizing Fixed Window Settings for Classification of Ischemic Stroke in Noncontrast Cranial CT Images S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, T. Yamasaki and D. Songsaeng IFMIA, 2025 |
|
|
Explainable AI for Image Aesthetic Evaluation Using Vision-Language Models S. Viriyavisuthisakul, P. Sanguansat and T. Yamasaki AIxMM, 2025 [paper] |
|
|
A Comprehensive Study of Scene Text Recognition in Scene Text Image Super-Resolution with Parametric Frameworks S. Viriyavisuthisakul, P. Sanguansat and T. Yamasaki ICCE, 2024 [paper] | |
|
The Adaptive Framework for Transformer-based Super Resolution: A Comparative Study for Scene Text Recognition S. Viriyavisuthisakul, P. Sanguansat, and T. Yamasaki WiCV in ECCV 2024 |
Comparative Evaluation of Fixed Windowing Strategies on CT Brain Images Using Multiple Deep Learning Models S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, T. Yamasaki and D. Songsaeng SITIS, 2023 [paper] |
|
Comparative Evaluation of Fixed Windowing Strategies on CT Brain Images Using Multiple Deep Learning Models S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, T. Yamasaki and D. Songsaeng WiML in NeurIPS 2023 |
|
|
Parametric Regularization Loss in Super-Resolution Reconstruction S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, T. Racharak, Minh Le Nguyen, C.Haruechaiyasak , and T. Yamasaki WiCV in CVPR 2023 |
|
|
Parametric Loss based Super-Resolution for Scene Text Recognition S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, T. Racharak, Minh Le Nguyen, C.Haruechaiyasak , and T. Yamasaki WiCV in ICCV 2023 |
|
|
A Regularization-based Generative Adversarial Network for Single Image Super-Resolution S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, T. Racharak, Minh Le Nguyen, C.Haruechaiyasak , and T. Yamasaki IMQA 2022 [paper] |
|
|
Evaluation of Window Parameters of Noncontrast Cranial CT Brain Images for Hyperacute and Acute Ischemic Stroke Classification with Deep Learning S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, C. Haruechaiyasak, Minh Le Nguyen, S. Sarampakhul, T. Chansumpao, D. Songsaeng IEOM 2022 [paper] |
|
|
Automatic queue monitoring in store using a low-cost IoT sensing platform S. Viriyavisuthisakul, P. Sanguansat, S. Toriumi, M. Hayashi and T. Yamasaki ICCE-TW, 2017 [paper] |