Supatta Viriyavisuthisakul

Logo

Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi, supatta.viri@kmutt.ac.th

View My GitHub Profile

AI and ML researcher

Education

Publications

Parametric Regularization Loss in Super Resolution Reconstruction
S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, Minh Le Nguyen, C.Haruechaiyasak.
[paper]

Parametric Loss based Super-Resolution for Scene Text Recognition
S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, T. Racharak, Minh Le Nguyen, C.Haruechaiyasak , and T. Yamasaki.
[paper] / [code]

A Web Demo Interface for Explainable Image Aesthetic Evaluation Using Vision-Language Models</a>
S. Viriyavisuthisakul, S. Yoshida, P. Sanguansat and T. Yamasaki
MIPR, 2025 (Accepted)
[VDO] / [code]

Interpretable Aesthetic Assessment and Prompt-Guided Image Retouching</a>
S. Viriyavisuthisakul, P. Sanguansat and T. Yamasaki
AI-SIPM at MIPR, 2025 (Accepted)

Undertrained Image Reconstruction for Realistic Degradation in Blind Image Super-Resolution
S. Viriyavisuthisakul, P. Sanguansat and T. Yamasaki
arXiv, 2025
[paper]

A Web Demo Interface for Super-Resolution Reconstruction with Parametric Regularization Loss
S. Viriyavisuthisakul, P. Sanguansat and T. Yamasaki
ICMR, 2024
[paper] / [code]/ [VDO]

Optimizing Fixed Window Settings for Classification of Ischemic Stroke in Noncontrast Cranial CT Images
S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, T. Yamasaki and D. Songsaeng
IFMIA, 2025

Explainable AI for Image Aesthetic Evaluation Using Vision-Language Models
S. Viriyavisuthisakul, P. Sanguansat and T. Yamasaki
AIxMM, 2025 [paper]

A Comprehensive Study of Scene Text Recognition in Scene Text Image Super-Resolution with Parametric Frameworks
S. Viriyavisuthisakul, P. Sanguansat and T. Yamasaki
ICCE, 2024
[paper]

The Adaptive Framework for Transformer-based Super Resolution: A Comparative Study for Scene Text Recognition
S. Viriyavisuthisakul, P. Sanguansat, and T. Yamasaki
WiCV in ECCV 2024

Comparative Evaluation of Fixed Windowing Strategies on CT Brain Images Using Multiple Deep Learning Models
S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, T. Yamasaki and D. Songsaeng
SITIS, 2023
[paper]

Comparative Evaluation of Fixed Windowing Strategies on CT Brain Images Using Multiple Deep Learning Models
S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, T. Yamasaki and D. Songsaeng
WiML in NeurIPS 2023

Parametric Regularization Loss in Super-Resolution Reconstruction
S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, T. Racharak, Minh Le Nguyen, C.Haruechaiyasak , and T. Yamasaki
WiCV in CVPR 2023

Parametric Loss based Super-Resolution for Scene Text Recognition
S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, T. Racharak, Minh Le Nguyen, C.Haruechaiyasak , and T. Yamasaki
WiCV in ICCV 2023

A Regularization-based Generative Adversarial Network for Single Image Super-Resolution
S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, T. Racharak, Minh Le Nguyen, C.Haruechaiyasak , and T. Yamasaki
IMQA 2022 [paper]

Evaluation of Window Parameters of Noncontrast Cranial CT Brain Images for Hyperacute and Acute Ischemic Stroke Classification with Deep Learning
S. Viriyavisuthisakul, N. Kaothanthong, P. Sanguansat, C. Haruechaiyasak, Minh Le Nguyen, S. Sarampakhul, T. Chansumpao, D. Songsaeng
IEOM 2022 [paper]
Automatic queue monitoring in store using a low-cost IoT sensing platform
S. Viriyavisuthisakul, P. Sanguansat, S. Toriumi, M. Hayashi and T. Yamasaki
ICCE-TW, 2017
[paper]